
MVIP
- Audio Enabled Multicast VNet

John L. Robinson, John A. Stewart and Isabelle Labbe
Communications Research Centre Canada *

ABSTRACT

This paper presents a multicast approach to shared
virtual worlds. A shared VRML world is described with
integrated spatial audio in a freeware VRML browser. An
implementation in Linux of multicast FreeWRL with the Robust
Audio Tool (RAT) is presented. To support this audio enabled
multicast VRML prototype, MVIP (Multicast VRML
Interchange Protocol) is implemented as a Java program using
the services of the Real-Time Protocol (RTP) and accessing
VRML via the External Authoring Interface (EAI).

CR Categories and Subject Descriptors: C.2.2 [Computer
Communication Networks]: Network Protocols; C.2.4
[Computer Communication Networks]: Distributed Systems –
Distributed Applications; H.5.1 [Information Interfaces and
Presentation] Multimedia Information systems – Artificial,
Augmented and Virtual Realities; H.5.3 [Information Interfaces
and Presentation] Collaborative Computing.
Additional Keywords: Virtual reality markup language
(VRML), distributed virtual environments, multi-user virtual
reality, IP multicasting, MBone

1 INTRODUCTION

Interest in shared virtual worlds has been evident for some
years, notably in the development of Distributed Interactive
Simulation (DIS) and the High Level Architecture/Run Time
Infrastructure (HLA/RTI) by the Defense Advanced Research
Projects Agency (DARPA) and the US Department of Defense.
At the same time VRML has emerged as an approach for the 3-
D Web and in parallel methods to share such a virtual world are
being developed [17]. To contribute to the development of
shared VRML, building on concepts from the client-server
based VRML interchange protocol used by the VNet [15], a
shared multicast virtual world protocol is proposed. The
approach is seen as complementary to the dis-Java-vrml and
virtual reality transfer protocol (VRTP) work [16], with the

* CRCC, Ottawa, K2H 8S2, Canada
EMail: {john.robinson, john.stewart, isabelle.labbe}@crc.ca

emphasis here on service to a relatively small community of
participants and on ease in supporting the amalgamation of
multicast applications, for example a shared VRML world with
talking avatars.

This paper introduces a shared virtual world based on our
multicast VRML Interchange Protocol (MVIP) and describes a
method for encapsulating the MVIP information in RTP. In an
earlier project [6] we had developed a shared VRML viewer
using FreeWRL [8] and the client-server VNet on a Linux
platform. Our experimental implementation is built on that
foundation, using shared FreeWRL in combination with
multicast audio (RAT).

In the next section there is a brief discussion to place this work
in the context of our research interests and of other research
activities in shared VRML worlds. After that we introduce
Multicast VRML Interchange Protocol (MVIP) implemented as
a Java program that uses the services of RTP and accesses
VRML via the EAI. The use of RTP provides the link for easy
combination with other multicast applications such as the well-
known real-time services already explored by the MBone
community. This is illustrated in the following section where we
describe our approach to integrating a multicast audio capability
into the shared virtual world. In the concluding section we note
the status of our experimental implementation and describe
plans for further development.

2. DISCUSSION

Over the last few years enthusiasm for a 3-DWeb viewer based
on VRML has exploded on the Internet. A number of
researchers have tackled the problem of developing support for
sharing a VRML world. A good review of design considerations
has been provided by Saar [13]. Most of the approaches that
have been taken to extend VRML for multi-user support rely on
simple network architectures based on the client-server model.
Several research groups [2, 3, 4, 9] have taken a more ambitious
approach introducing new network protocols and architectures
that include basic multicast internet protocols rather than a
centralized distribution scheme. While the proposal to exploit
multicasting for shared virtual environments has been around for
some time [9] a fully capable solution has not been agreed upon
yet.

Our interest has arisen from a long-term research program in
multicast tools for research collaboration, tele-learning and other
shared collaboration environments [5, 7, 10]. Hence the focus is
on interactions within a restricted space (e.g. conference room or
building) with a small number of active players (probably less
than 10). This is characteristic of a typical collaborative
exercise. We have looked for an environment that can be rich in
real-time interactive features, in particular audio, video, shared
workboard, shared documents, making this a natural opportunity

to exploit the multicast applications under development in the
MBone community.

Active approaches include the work being done with
VRML/DIS integration and the definition of VRTP [3]. Our
approach meets some of the VRTP criteria such as the use of
multicasting but is not based on DIS PDUs. We concur with the
general observation that while DIS is very suitable for the
special large-scale defense uses for which it was designed most
DIS PDUs are not suitable for general-purpose virtual
environments.

Other related work [2] includes the Distributed Worlds Transfer
and communication Protocol (DWTP) where the emphasis is on
reliability and scalability and the definition of a set of daemons
to manage those features. We expect some of those ideas to
become useful when we address more complex issues. However,
noting for example that reliability is not important for position
and orientation updates, we have taken a simple approach and
concentrate instead on embedding shared virtual worlds into the
interactive real-time multicast technology coming from the
MBone research community.

Finally, the scheme proposed in [4] is closest in concept to our
approach. Multicast IP is used for peer-to-peer communications
among browser-clients and http is used, via a “Gatekeeper”, to
locate and load the initial world.

An earlier project [6], concerning QoS management with the
Internet Protocol version 6 (IPv6), developed a shared VRML
viewer using FreeWRL [8] and the client-server VNet [15] to
work on a Linux platform. The experimental implementation of
audio enabled sharedVRML, built on that foundation,
developing a multicast FreeWRL in combination with the
multicast capable Robust Audio Tool (RAT).

Our FreeWRL viewer (Figure 1) can be launched via a Web
browser however two factors have dissuaded us from using a
browser-based interface at this stage of development: Java
applets have restrictions concerning the generation of multicast
packets; unresolved applet problems with EAI code on NT
machines has led us to simplify and gain complete control of the
development environment. Continuing with that simple
approach, we have not developed a special MVIP control panel
but rather use VRML objects for Shared Virtual World control.
This allows us to move transparently to other control
mechanisms, for instance, head-mounted displays or joystick
control.

Figure 1: Screenshot of the Shared FreeWRL Viewer

3 THE MULTICAST VRML
INTERCHANGE PROTOCOL (MVIP)

3.1 Architecture for Multicast VRML

A simple, compact VRML Interchange Protocol (VIP) that
sends VRML commands over networks and allows multi-user
participation has been described by Sonstein [15] and is being
used by the VNet client-server pair in various distributed VRML
systems. This provides a useful starting point from which the
reliance on a server for host-host exchange can be removed and
replaced with direct peer-to-peer communications using RTP,
User Datagram Protocol (UDP) and multicast IP. We call this
shared-multicast-virtual-world protocol Multicast VIP (MVIP).
MVIP is implemented as a Java program that uses the services
of RTP [14] and accesses VRML via the EAI (Figure 2).

Figure 2:
The Interrelated Technologies Used for Multicast VRML.

 VRML Viewer

 MVIP

 RTP

 EAI

 Multicast Internet

Following VNet’s example message types are defined for
exchanging updates on position, orientation etc., an avatar
insertion methodology and other information. An RTP packet
type has been proposed [11] so that the suite of MVIP message
types, modified from those defined for VIP, can be embedded
into RTP packets for real-time exchange. Two classes of
message type are defined so that time sensitive data flows in
RTP while informational data flows in RTCP. These messages
are generated from every participant (source) in the shared
world and broadcast to all the other members of the multicast
session.

When the viewer is launched, from a command line or the
Session DiRectory (SDR), the world model is retrieved from an
http repository. Informational message types are defined to
retrieve, from an http repository, the specific avatar appearance
selected by the other participants and, with a world-checksum,
to maintain confidence (soft synchronization) in the common
view of the shared world. The protocol layering for our shared
virtual world is illustrated in Figure 3.

3.2 Message Types

When one moves in a shared world, the others sharing the world
must see this movement, and they must know how to map an
Avatar, and other services onto this movement. There are two
classes of data that must be interchanged over a network to
allow for this sharing:

a) Time-sensitive data
b) informational data

In MVIP the time sensitive data flows over RTP while the
informational data flows over RTCP. The message types that
have been defined for MVIP and the type IDs that have been
assigned are given in Tables 1 & 2. The encoding column
defines the bit pattern to be used in an implementation.

Figure 3: Protocol Layers for a Shared MVIP World

ID Name Encoding Description
1 Position float float float

(32 bit)
x, y, z
position in Cartesian coordinates;
base coordinates and references supplied by the base world

2 Orientation float float float float
(32 bit)

3-vector of axis, angle (angle in radians)
base coordinates and references supplied by the base world

3 Clicked int int
(32 bit unsigned)

SSRC of object that has been clicked;
source of this action is given in RTP payload header

4 Interaction/Gestures int utf8
(32 bit unsigned, string)

Avatar dependent action information

future - - -

Table 1: Message Types and ID Assignment for Time-Sensitive Data

 VARIOUS NETWORKS

 IP

 TCP UDP

 RTP

 MVIP
INTEGRATED
MULTICAST

APPLICATIONS

HTTP

Time-sensitive data includes position/orientation
changes that must be updated in a timely manner.
These messages contain parameters (position and
orientation with standard VRML meanings) that
identify the current location (at time of packet
generation) for that avatar.

Interaction between avatars can be seen by sending
a "clicked" packet. The result of this clicked event
is defined by either the avatars themselves, or by
the world. For example, transferring ownership of a
child-object (e.g. a book, a key, etc.) to a remote
avatar may be accomplished by clicking on the
destination.

An avatar can have gestures or other actions, defined and
invoked by the owner of that avatar. Such gestures may include
facial expressions (laugh, smile, frown, etc) or other actions, for
example, morphing from one shape to another. By either
including a VRML_ROUTE command or an external program,
it is possible to have a clicked event initiate avatar gestures. An
example of this may be a button on a display case, that when
clicked, changes the items in the display. The format and
functionality of the clicked and gesture message types is under
development.

ID Name Encoding Description
-1 Avatar Information float float float utf8

(32 bit, string)
the scaling factor for an avatar, (along Cartesian coordinates) and
the URL of an avatar to represent this SSRC1.

-2 World Checksum int
(32 bit unsigned)

ensures that all players are playing in the same virtual world.
 (currently, no algorithm has been selected to generate this
checksum.)

-3 Proximity Criteria
float float float

(32 bit)
distributes the "personal space" around the avatar, for use in non-
VRML collisions, audio closeness, and other2.

-4
Amalgamation of tools

information
int utf8

(32 bit unsigned, string)
This allows grouping of different media sources that may be
independent on the RTCP CNAME parameter3.

future - - -

Table 2: Message Types and ID Assignment for Informational Data

1 Message type: -1 (avatar information)
More than one avatar URL can be given. The first URL indicates the primary avatar, additional URLs indicate objects owned by this
avatar. This information facilitates transfer of ownership via “clicked” packets.
2 Message type: -3 (proximity criteria)
This message distributes information about the "personal space" around the avatar, for use in non-VRML collisions, audio
closeness, and other. For example to determine audio closeness (i.e.who can hear me?) the results of the proximity detection
calculations, as described in the next Section, could be transmitted.
3 Message type: -4 (Amalgamation of tools information)
This allows grouping of different media sources that may be independent of the RTCP CNAME parameter. This grouping enables
identification and correlation of such media streams on a configurable basis, for use by other participants. The owner of the resource
is the SSRC in the originating RTP packet. Packets consist of groups of the following tuples: SSRC of tool (32 bit integer); MCast
address/port (network dependent) (utf8 string).
This message type will be used when handling different multicast services for one avatar on more than one computer.

Informational data consists of the avatar presentation
information (a reference to a VRML file), standard RTCP
data such as a CNAME, and special items, for instance, a
"world" checksum to ensure that all avatars are playing in the
same world.
These are passed as APP fields in RTCP packets.

3.3 MVIProtocol in RTP

Packet types have been defined for the two classes of MVIP
data. Time sensitive data that is carried in RTP packets and
informational data that is carried as APP fields in RTCP
packets. Figures 4 and 5 provide examples of MVIP
messages embedded in RTP and RTCP packets respectively
[14]. Definition of an RTP payload type to support this
embedding has been proposed in the IETF AVT Working
Group [11].

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| V |P|X| CC=0 |M| PT | sequence number |

+-+
| timestamp of initial frame |

+-+
| synchronization source (SSRC) identifier |

+-+
| MVIP_PT =1 | Version | undefined |

+-+
| X axis (32 bit float) |

+-+
| Y axis (32 bit float) |

+-+
| Z axis (32 bit float) |

+-+

Figure 4: a Position update in RTP

Where:
V, P, X, CC, M, PT, sequence number, Timestamp, and
SSRC are defined in the RTP specification [14].

MVIP_PT is the Shared VRML Packet Type (8 bits); this
determines the remainder of the packet. Version (8 bits) is
the version of MVIP being used. The SSRC identifier is used
as the object identity.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| V |P| RC | PT=204 | length |

+-+
| SSRC of sender |

+-+
| MVIP_PT = -1| Version | undefined |

+-+
| scaling factor on X axis (32 bit float) |

+-+
| scaling factor on Y axis (32 bit float) |

+-+
| scaling factor on Z axis (32 bit float) |

+-+
| URL of the avatar geometry |

+-+
| URL of the child 1-N (as needed) |

+-+

Figure 5: Avatar information in RTCP

Where:
V, P, RC, PT, length, and SSRC are defined in the RTP
specification [14]. (RTCP PT=204 identifies the application
(APP) type).

MVIP_PT is the Shared VRML Packet Type (8 bits); this
determines the remainder of the packet and Version (8 bits)
is the version of MVIP.

4. AUDIO FOR SHARED VRML

Our goal was to create a realistic audio environment in our
virtual world. For this we need audio proximity information
to silence the audio from remote speakers and to amplify the
volume as an avatar approaches. We also wanted stereo
volume control to localize the direction of the audio source in
3D [1].

Our interest in embedding a multiparty interactive audio
capability in the virtual world was aided with the newest
release of the Robust Audio Tool (RAT v4) [12] from UCL.
RAT v4 has the functionality to support audio proximity
(already in previous versions) and stereo-based directionality
(3D audio new in v4). The RAT application is launched at
the same time as the VRML viewer with an announced or
predetermined multicast address and port number. The
MVIP program sends to RAT the login name chosen by the
user. RAT uses this login name as its CNAME (RTP) for the
session.

RAT will receive the audio signal from every transmitter in
the multicast group. From these we want to distinguish those
sources that are close enough to be heard. We have modified
RAT by adding an “MVIP_filter” to the source code so that
distant sources are discarded and the audio gain is set for
loudness and direction based on information received from
the MVIP program.

The MVIP program receives, via the EAI, the
position/orientation of it’s avatar at all times as well as
knowing about the position/orientation of other participants
via the information it receives from the other participants in
the position and orientation update messages. Using this
information, the MVIP program performs periodic
calculations to determine the proximity and orientation of the
avatar relative to other avatars that are audio sources. (The
mathematics for these calculations is given below).
Demonstration showed that, for our prototype
implementation, once per second was frequent enough for
these calculations to give the subjective impression of real-
time without the computation putting a heavy load on the
processor. It remains for future study to determine how well
this computationally complex problem will scale to many
users

The MVIP program transmits the following information to
RAT (Figure 6): name of each avatar that has been calculated
to be within audio proximity; for each of those the associated
audio gain and azimuth (for 3D audio). If no one is within
proximity the string sent to RAT contains a null character.

Figure 6: Integration of RAT into a Shared VRML
World

RAT maintains a table with the names of all the avatars that
are close enough and their associated audio output gain and
azimuth. When RAT receives an update from the MVIP
program the string is decoded and table updated with the new
information.

When receiving an audio packet on the multicast address,
RAT extracts the CNAME and determines from the table if
the audio packet should be kept or discarded. (CNAME of
the audio packet should match an avatar name in the table).
For each of the avatars that is within proximity, the audio is
rendered with the appropriate gain and 3D value.

Figure 7 shows the geometry that we have used for the
location and orientation of two avatars relative to the origin
of the virtual world. For simplicity, the elevation is not taken
into account.

Figure 7: Geometry of the Virtual World as Seen from
Above

To simplify computational complexity calculations are
performed on the ground plane only. For each avatar (other
than itself) in the shared virtual world the MVIP program
performs the following steps:

• a proximity detection calculation i.e. computes the
distance to the other avatars and verifies if that distance
is within the threshold.

D < Threshold
where

D = (∆y2 + ∆x2) 1/2

If the other avatar is within proximity, then the distance is
equated (see below) to a RAT audio output gain/volume and
the azimuth (Az) is calculated.

• an azimuth calculation i.e. calculates the rotation of the
avatar relative to the other avatar’s position.

γ = atan2 (∆y / ∆x)

Az = α − γ

RAT uses the azimuth to balance the output to the right and
left channels. For the calculation of the azimuth, the
orientation of the receiver avatar (α) relative to the world
origin is known from VRML.

In our prototype implementation, 10 meters was selected as
the threshold, i.e. if the distance is greater than 10 m, it is
declared that the other avatar was too far away to be heard. If
it is calculated that the other avatar is within proximity, then
a linear function is assumed for the mapping of the distance
to RAT audio output gain. Specifically:

Gain = 100 –10D

where D is the distance, as above.

5. STATUS AND FUTURE DIRECTIONS

To test the ideas presented above an existing multi-user
VRML (FreeWRL/VNet) is being converted into a multicast
shared virtual world. In an earlier project [6] a shared VRML
viewer using FreeWRL [8] and the client-server VNet [15]
was developed on a Linux platform. Our experimental
implementation of audio enabled sharedVRML has built on
that foundation, replacing VNet with MVIP to give a
multicast FreeWRL in combination with an MBone audio
tool (RAT) [12]. User response to this new capability has
been very positive. A simple approach has been taken that
concentrates on embedding shared virtual worlds into the
interactive real-time multicast technology (IP multicast, RTP,
etc.) coming from the MBone research community.

While the RTP embedding strategy has been illustrated with
MVIP it was designed to be independent of any particular
distributed simulation transport protocol and can be used

D

 MVIP

 RTP

 Multicast Internet

 modified
 RAT

 RTP

 VRML
 Viewer

EAI

α

γ

y1

x1

World Origin

Y

y2

x2

X

Az

with any open source VRML browser. It remains for future
study to explore this approach for example with VRTP and
DIS.

More complex issues arising from reliability and scalability
will be important in future work. Noting, for example that
reliability is not important for position and orientation
updates and that applications in research collaboration, our
initial interest, are likely to involve only a small number of
participants, those issues have been downplayed initially.
This work has built on an earlier project that included a study
of QoS management in IPv6 to support distributed
simulation. It remains for future investigation to determine if
that can provide sufficient reliability as an alternative to
other approaches, such as reliable multicast.

ACKNOWLEDGEMENT

The authors wish to thank Colin Perkins, Orion Hodson and
other members of the RAT team at University College
London for their help with RAT. We also thank Nicolas
Georganas and the members of the DIVE team at University
of Ottawa for their ideas during the CANARIE/DIVE project

REFERENCES

[1] J.Bolot & S.Fosse-Parisis. Adding Voice to Distributed
Games on the Internet, In IEEE Infocom’98, pages 480-
487. San Francisco 1998.

[2] W. Broll. DWTP - An Internet Protocol for Shared
Virtual Environments. In Proceedings of the VRML’98
Symposium, Monterey California, February 1998.

[3] D.Brutzman, M.Zyda, K.Watsen and M.Macedonia.
Virtual Reality Transfer Protocol (vrtp) Design
Rationale, In Workshop on Enabling Technology:
Infrastructure for Collaborative Enterprises: Sharing a
Distributed Virtual Reality, pages 179-186. MIT,
Cambridge, Massachusetts. June 1997

[4] J.A.Carson & A.F.Clark. Multicast Shared Virtual
Worlds using VRML97, In Proceedings of VRML'99,
pages 133-140, 1999.

[5] Collaborative Virtual Workspace (CVW),
http://www.mitre.org/pubs/showcase/cvw.html

[6] Distributed Interactive Virtual Environment (DIVE)
over CA*net II: QoS Management, IPv6 and
Performance Tools.
http://www.mcrlab.uottawa.ca/research/DIVE.htm.

[7] D.W.Fellner and A.Hopp. VR-Lab - A Distributed
Multi-User Environment for Educational Purposes and
Presentations. In Proceedings of VRML'99, paes 121-
131. 1999.

[8] FreeWRL – An Open Source VRML Browser for
Linux. http://www.crc.ca/FreeWRL/.

[9] M.Macedonia, M.Zyda, D.Pratt et al. Exploiting Reality
with Multicast Groups: A Network Architecture for
Large-Scale Virtual Environments. In Proceedings of
IEEE VRAIS’95, pages 2-10. March 1995.

[10] MECCANO: Multimedia Education and Conferencing
Collaboration over ATM Networks and Others,
http://www-
mice.cs.ucl.ac.uk/multimedia/projects/meccano/.

[11] J.Robinson and J.Stewart. RTP Payload format for
Shared Multicast Virtual Worlds (SMVW). work in
progress - draft-stewart-avt-00.txt, 25 June 1999.

[12] Robust Audio Tool (RAT).
http://www-mice.cs.ucl.ac.uk/multimedia/software/rat.

[13] K.Saar. VIRTUS: A Collaborative Multi-User Platform.
In Proceedings of VRML’99, pages 141-152. 1999.

[14] H.Schulzrinne, S.Casner, R.Frederick and V.Jacobson.
RTP: A Transport Protocol for Real-Time Applications,
RFC 1889, IETF AVTWG, January 1996.

[15] draft-ietf-avt-rtp-new-005.txt, October 1999.

[16] The VRML Interchange Protocol: VNet.
http://ariadne.iz.net/~jeffs/vnet/.

[17] Web3D Consortium DIS-Java-VRML Working Group.
http://www.web3d.org/WorkingGroups/vrtp/dis-Java-
vrml.

[18] M.Zyda and S.Singhal. Networked Virtual
Environments: Design and Implementation. Addison
Wesley Publ., August 1999.

